A Note on Optimal Probability Lower Bounds for Centered Random Variables

نویسنده

  • MARK VERAAR
چکیده

In this note we obtain lower bounds for P(ξ ≥ 0) and P(ξ > 0) under assumptions on the moments of ξ. Here ξ is a centered real-valued random variable. For instance we consider the case where the first and p-th moment are fixed, and the case where the second and p-th moment are fixed. Such lower bounds are used in [2, 3, 5, 7] to estimate tail probabilities. It can be used to estimate P(ξ ≤ Eξ) for certain random variables ξ. Let cp = (E|ξ|p) 1 p and cp,q = cp/cq. Examples of known estimates that are often used for p = 2 and p = 4 are respectively

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.

متن کامل

On Convex Probabilistic Programming with Discrete Distributions

We consider convex stochastic programming problems with probabilistic constraints involving integer valued random variables The concept of a p e cient point of a probability distribution is used to derive various equivalent problem for mulations Next we introduce the concept of r concave discrete probability distri butions and analyse its relevance for problems under consideration These notions...

متن کامل

A note on general sliding window processes

Let f : R → [r] = {1, 2, . . . , r} be a measurable function, and let {Ui}i∈N be a sequence of i.i.d. random variables. Consider the random process Zi = f(Ui, ..., Ui+k−1). We show that for all q, there is a positive probability, uniform in f , that Z1 = Z2 = ... = Zq. A continuous counterpart is that if f : R → R, and Ui and Zi are as before, then there is a positive probability, uniform in f ...

متن کامل

Sharper lower bounds on the performance of the empirical risk minimization algorithm

In this note we study lower bounds on the empirical minimization algorithm. To explain the basic set up of this algorithm, let (Ω, μ) be a probability space and set X to be a random variable taking values in Ω, distributed according to μ. We are interested in the function learning (noiseless) problem, in which one observes n independent random variables X1, . . . , Xn distributed according to μ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008